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COMMENT 

On thc spectrum of one-electron Hamiltonians with 
impurities 
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Institut de Physique, UniversitC de Neuchitel, Rue A-L Breguet 1, CH-2000 Neuchltel, 
Switzerland 

Received 23 January 1978, in final form 30 May 1978 

Abstract. We study the modifications introduced in the spectrum of a one-electron 
Hamiltonian with a locally square integrable periodic potential by a class of perturbations, 
including finite sums of Coulomb potentials. We also remark on some qualitative 
differences with respect to the spectrum associated with trace class perturbations consi- 
dered by J Avron. 

The analysis of doped insulators or semiconductors has shown that the presence of 
defects or impurities may lead to the introduction of discrete energy levels in the 
forbidden energy bands (see Bassani et al (1974) for a nice review). The simplest 
model used to describe such a system is a one-electron Hamiltonian with a locally 
square integrable periodic potential, to which an element of a large class of long-range 
order potentials, including Coulomb interactions with a (finite) number of impurity 
centres, is added. The main purpose of this note is to prove that under these condi- 
tions the perturbation introduces at most isolated point eigenvalues of finite multi- 
plicities in the forbidden energy bands, which may accumulate at most at an extreme 
point of a band. The proof is a very simple adaptation of Hunziker’s classic argument 
(1966), together with a remark of Thomas (1973), but because of its relevance to the 
models, it seems useful to present it  here. 

In the so-called crystal momentum representation (Blount 1963), neglecting 
interband transitions, there exists a similar result under the assumption that the 
perturbation is of trace class (Avron 1977, theorem 2). We comment on some 
qualitative differences between the spectrum in this approximation and in the less 
restrictive model considered above. 

Let L be a lattice in R 3  and V a potential with 

V(x  + t )  = V(x) X € R 3  t E L. 

Let 

Ho=-A+ V 

as an operator on X =  L2(R3, d3x). If i is the lattice dual to L (reciprocal lattice), let 
Ho(k)  be the operator on f 2 ( t k ) ,  t k  being the Coset corresponding to k E R 3 / t  (Avron 

t Supported by the Swiss National Science Foundation. 
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et a1 1974), given by 

Ho(k)= T(k)+ V 

(T(k)W(P)= (P+k)**(P) p EL k E R 3 / i  

( V W P ) =  c m W - 4 )  
q E i  

v(4) = 1Al-l I exp(- iqx)V(x) d3x 
A 

where A is a basic cell of L. Then (Avron e? a1 1974) Ho is unitarily equivalent to the 
direct integral 

on 

where B = R 3 / i  is the Brillouin zone. We assume V E Lk,(R3, d3x) or, equivalently, in 
view of (l), 

U* 1, I V(x)I2 d3x < 00. 

The properties of Ho are summarised in the following proposition. 

(3) 

Proposition 1 (Avron e? a1 1974, Thomas 1973). Ho is self-adjoint on D(Ho)= 
D ( - A ) t  and bounded below. EH,, is absolutely continuous. ECHO consists thus of the 
union of a countable number of connected disjoint closed sets, which we shall call 
‘bands’. Let now 

H = H o + U  (4) 

U €  L2(R3)+ L 3 R 3 )  (5 ) 

where U is a multiplication operator on %’, satisfying the condition 

in the notation of Hunziker (1966). This condition allows for potentials of type 

where the hi,  i = 1 , .  . . , N, are real constants (related to ‘dielectric constants’ in 
Bassani et a l )  and x i  = 1,  . . . , N, arbitrary points in L. 

Proposition 2 .  H is self-adjoint on D ( H )  = D ( -  A )  and bounded below. 

Proof. V is a Kato-small perturbation of ( - A ) ,  that is D ( V ) r , D ( - A )  and for all 
+ E D (  - A) and all E > 0 there exists !I(€)< 00 such that 

IIWllS EI l - -+ l l+~(~) l l+ I I .  (6) 

t For any operator A on X D(A)  denotes its domain and E A  its spectrum, and if z g  EA, RA(z )=  ( z  -A ) - ’ ,  
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Since V is assumed to be only focally L2 ,  the standard Kat0 proof of (Reed and Simon 
1975, theorem X-16) does not apply immediately. However, the result follows easily 
from Avron et a1 (1974). Let E be negative real. We have for all + € D ( H 0 ) ,  
V+ = - / (E + A)-'@ + A)+ because ( V ( E  + A)-') is bounded: 

This also shows that (6) holds, with as defined by (7), and b ( ~ ) =  €[El ,  and E may be 
made arbitrarily small by choosing E sufficiently large negative. By ( 5 ) ,  U is a 
Kato-small perturbation of ( - A )  (Reed and Simon 1975, theorem X-16), hence so i s  
(U + V), and the final assertion follows from the Kato-Rellich theorem (Reed and 
Simon, theorem X-12). 

Proposition 3, If z i i  Z H ,  the operator 

A (2 ) URH,(Z) 

is a compact operator. 

Proof. By Hunziker (1966) it is sufficient to prove that 

A1(2)= UlRH,(z) 

is Hilbert-Schmidt for ziiXHo and U 1 ~ L 2 ( R 3 ) ,  and by standard arguments it is 
sufficient to prove this for any negative real E & X H o .  As in Thomas (1973), this follows 
by writing 

A 1 ( E )  = A 2 A 3 ( E )  

where A2 = U1(l  -A)-' is-Hilbert-Schmidt (Hunziker 1966) and 

A 3 ( E ) =  (1 - A)(E - H)-'  = I (1 + T(k) ) (E  - T(k)) - ' [  1 - u'(k)(E - T(k))-']-'  d3k 

is bounded for E sufficiently large negative (Avron et a1 1974). 

,a 

B 

Proposition 4. ( a )  Z H ~ G X H .  ( b )  The part of X H  in the complement of XH, (in 
particular, in a 'forbidden energy band') consists of isolated point eigenvalues of finite 
multiplicities, which may accumulate at most at the extremities of a band. 

Proof. ( a )  Define, for each x E L ,  the operators T, by 

It follows by the same argument of Hunziker (1966, lemma 3), that 

lim IIUT$IJ = 0 Vf E D(H0). 
1x1" 

Now, for x E L ,  Tx and Ho commute on D ( H o )  by (1). The rest of the argument is as in 
Hunzi ker (1 966). 

( b )  We use the Lippman-Schwinger equation 

R H ( z ) =  RH,(z)+ R H , ( ~ ) U R H ( Z )  z a 8 H .  
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(RHo(z)V) has a unique bounded extension (RHo(P)U)* = URHo(z), which is a 
compact operator by proposition 3. The rest follows as in Hunziker (1966). Avron 
(1977) considered perturbations of trace-class in the crystal-momentum represen- 
tation, neglecting interband transitions (‘small’ coupling constant). As he remarked, 
there are qualitative differences between the spectrum with and without these 
approximations, in the case of a potential growing at infinity, and we should like to 
comment on the qualitative differences in the impurity case. Under a reasonable set of 
assumptions, the number of eigenvalues of H in a ‘forbidden energy band’ is finite, in 
contrast to what is expected in the Coulomb caset. This is not surprising, of course, 
because the trace-class condition is a ‘short-range’ condition, but the point is that the 
finiteness of the number of eigenvalues is here, under this condition, an almost 
universal phenomenon, due to the fact, emphasised by Avron (1977), that classically 
or semi-classically the orbits in k-space do not extend to infinity. 

To analyse the situation, firstly we write 2 as a direct sum over a ‘band index’ 
(Odeh and Keller 1964) 

cc x= e x f l .  
fl=l 

More precisely, each 4 E X may be represented by a sequence {4n}:=l such that 

where 
We define the Hamiltonian in correspondence with (8), by 

are the ‘Bloch waves’ (Odeh and Keller 1964, corollary 2 in their notation). 

H = H o + U  

Ho= 8 H O ”  

U = @ U n  

W 

fl=l 

m 

n = l  

( H o n 4 n  )(k) = (k )4n (k ) k e B  

under the condition 

The above definition is equivalent to the one given by Avron (1977). If the A,( t )  are 
interpreted as matrix elements of U between Wannier functions a , ( . - t )  (in the 
notation and definition of Odeh and Keller, appendix). The model is a generalisation 
of a model of Koster and Slater (1954). We assume that C H ~ . ,  the range of en(*) (the 

t The Coulomb case has been studied by Bentosela (1977). who provided a rigorous justification of the 
‘effective mass approximation’. 
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‘band’ Z,), is absolutely continuous, and that 2, nZ, = 0 for n # m, i.e. the bands do 
not overlap. Hence the spectrum Z.H~ = U ZHon is absolutely continuous. The operator 
U is easily seen to be trace-class, whence ( a )  and ( b )  of proposition 3 hold (Avron 
1977). By methods of Ghirardi and Rimini (1965, see also Simon 1971) one may 
prove the following proposition. 

Proposition 5. Suppose there exist non-degenerate critical points of maximum and 
minimum of E , (  - ) in B, for each n. Let E, =maxksBEn(k), and e,  3 mink,BE,(k), and 

Then the number N :  of eigenvalues of H in the interval (E,,, E,, + Cn], where C, is 
defined by (9), satisfies 

Similarly, the number N ,  of eigenvalues of H in the interval [ e ,  - C,, e,)  satisfies 

Let G,aO denote the magnitude of the gap between the bands 2, and & + I .  We 
assume finally: there exists y > 0 independent of n such that 

max{C,, Cn+lls G n - y  V n  = 1,2, .  . .. (10) 

This assumption is quite natural, since we neglected interband transitions in our 
definition, and C, is a measure of the magnitude of the perturbation. 

Corollary. Under assumption (lo), the number of eigenvalues of H in any forbidden 
energy band is finite. 

Proof. By proposition 4 applied to our case, the eigenvalues of H may accumulate at 
most at the extremity of a band. Now, it is easy to prove that 

c = G c  H ,  HO, + U,. 
H n = l  H, 

Further, by (lo), there exists no point at the extremity of any particular band which is 
a limit point of a sequence of eigenvalues, each one coming from one of the bands (in 
principle infinite in number) which are situated above it. Hence, it is sufficient to prove 
that the number of eigenvalues of H ,  in any two half-open intervals having, respec- 
tively, E, and e,  as end points, is finite. This follows from proposition 5. 
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